

Abstracts

Linearity characteristics of GaAs HBTs and the influence of collector design

M. Iwamoto, P.M. Asbeck, T.S. Low, C.P. Hutchinson, J.B. Scott, A. Cognata, Xiaohui Qin, L.H. Camnitz and D.C. D'Avanzo. "Linearity characteristics of GaAs HBTs and the influence of collector design." 2000 Transactions on Microwave Theory and Techniques 48.12 (Dec. 2000 [T-MTT] (Special Issue on 2000 International Microwave Symposium)): 2377-2388.

The linearity characteristics of GaAs heterojunction bipolar transistors (HBTs) are studied through measurement and analysis. Third-order intermodulation distortion behavior of HBTs is examined on devices with various epilayer designs and at various bias points, loads, and frequencies. Calculations from an analytical model reveal a strong bias and load dependence of third-order intercept point (IP3) on the nonlinearities from transconductance and the voltage dependence of base-collector capacitance. However, a simple model is not able to predict the fine details of IP3 with bias. A large-signal HBT model with an accurate description of the base-collector charge is shown to account for the measured trends. The base-collector charge function accounts for the modulation of base-collector capacitance with current, electron velocity modulation, and the Kirk effect (base pushout) for GaAs-based HBTs. A detailed study of the influence of collector design on linearity is also presented.

[Return to main document.](#)

Click on title for a complete paper.